Vetor médio móvel r


Como calcular a média móvel sem usar filtro () Há um zilhão de respostas a isso, porque a sua pergunta é realmente: Como faço para suavizar uma série de tempo Assim, você pode pesquisar palavras-chave adequadas. Minha resposta é: não use médias móveis - thats pathetically antigo. Loess é um entre os zilhões de alternativas que você pode considerar. Poste no CV (stats. stackexchange) para outras alternativas estatísticas para alisamento de séries temporais. Além disso, o quotunderstandingquot você expressou acima é falho. As construções de tipo de aplicação são loops (de nível R). Então, você fez sua lição de casa lendo Uma Intro para R (cran. r-project. org/doc/manuals/R-intro. pdf) ou outros tutoriais da web Se não, por favor, faça isso antes de postar aqui mais. Bert Gunter Genentech Biostatistics Nonclinical (650) 467-7374 quotData não é informação. A informação não é conhecimento. E o conhecimento não é certamente sabedoria. H. Gilbert Welch Em Seg, Fev 17, 2017 at 10:45 AM, C W lthidden e-mail gt escreveu: gt Hi lista, gt Como faço para calcular uma média móvel sem usar filter (). Filter () não gt parece não dar médias ponderadas. Gt gt Estou olhando para aplicar (), tapply. Mas nada quotmovesquot. Gt gt Por exemplo, gt gt datlt - c (1:20) gt mean (dat1: 3) gt mean (dat4: 6) gt mean (dat7: 9) gt mean (dat10: 12) gt gt etc. Entender o ponto de aplicar é evitar loops, como devo incorporar gt esta idéia em usar um gt gt gt Obrigado, gt gt gt gt gt alternativa versão gt gt gt gt ocultos mail mailing list gt stat. ethz. ch/mailman / Listinfo / r-help gt POR FAVOR, leia o guia de publicação R-project. org/posting-guide gt e forneça código comentado, mínimo, auto-contido e reprodutível. Em resposta a este post por tmrsg11 Em 17 de fevereiro de 2017, às 10:45, C W escreveu: gt Hi lista, gt Como faço para calcular uma média móvel sem usar filter (). Filter () não gt parece não dar médias ponderadas. Gt gt Estou olhando para aplicar (), tapply. Mas nada quotmovesquot. Gt gt Por exemplo, gt gt datlt - c (1:20) gt mean (dat1: 3) gt mean (dat4: 6) gt mean (dat7: 9) gt mean (dat10: 12) gt gt etc. Entender o ponto de aplicar é evitar loops, como devo incorporar gt essa idéia em usando um () gt Construir um vetor para agrupar e usar tapply. A divisão do módulo é um método comum para conseguir isso. Às vezes a seq-função pode ser usada se você ajustar o comprimento corretamente. Gt tapply (dat, (0: ​​(comprimento (dat) -1)) / 3, média) 0 1 2 3 4 5 6 2.0 5.0 8.0 11.0 14.0 17.0 19.5 tapply (dat, round (seq (1, ) / 3), comprimento de len (dat))), média) 1 2 3 4 5 6 7 1,5 4,5 8,0 11,0 14,5 18,0 20,0 O comentário sobre a ponderação dos não parece ser exemplificado no seu exemplo. Gt Obrigado, gt Mike gt gt alternativa versão HTML suprimido gt gt gt lista de e-mail escondida gt stat. ethz. ch/mailman/listinfo/r-help gt POR FAVOR leia o guia de postagem R-project. org/posting-guide Gt e fornecem código comentado, mínimo, auto-contido, reprodutível. Como calcular a média móvel sem usar o filtro () Em resposta a este post de Rui Barradas Para média móvel de 5 pontos, filtre (x, side2, filterrep (1/5, 5)), versus, filter (x, side2, filterrep (1, 5) Eles têm o mesmo efeito, já que o total precisa ser 1. Gabor amp Rui: Estou ciente do pacote zoo, Eu não queria instalar um pacote para uma função. Mesmo motivo para o pacote de S .. David, obrigado, que é o que eu estou procurando Mon, 17 de fevereiro de 2017 às 2:07, Rui Barradas lthidden e-mail gt escreveu: Gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt Gt pode ser computado com algo como o seguinte gt gt s lt - (seqalong (dat) - 1) / 3 gt sapply (divisão (dat, s), média) gt gt gt Espero que isso ajude gt gt Rui Barradas gt gt Gt Em 17-02-2017 18:45, CW escreveu: gt gtgt Oi lista, gtgt Como calcular uma média móvel sem usar filter (). Filter () gtgt não parece dar médias ponderadas. Gtgt gtgt Eu estou olhando para aplicar (), tapply. Mas nada quotmovesquot. Por exemplo, gtgt gtgt gtgt datlt-c (1:20) gtgt significa (dat1: 3) gtgt significa (dat4: 6) gtgt significa (dat7: 9) gtgt significa (dat10: 12) gtgt gtgt etc. Entender o ponto de aplicar é evitar loops, como devo gtgt incorporar gtgt esta idéia em usar um () gtgt gtgt gtgt Obrigado, gtgt gtgt gtgt gtgt alternativo versão HTML excluído gtgt gtgt gtgt lista de discussão de e-mail escondido gtgt stat. ethz. ch/ Mail / listinfo / r-help gtgt POR FAVOR leia o guia de postagem R-project. org/ gtgt posting-guide gtgt e forneça código comentado, mínimo, autónomo e reprodutível. Gtgt gtgt versão HTML alternativa deletedDocumentation tsmovavg saída tsmovavg (tsobj, s, lag) retorna a média móvel simples para o objeto de séries temporais financeiras, tsobj. Lag indica o número de pontos de dados anteriores usados ​​com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (vetor, s, lag, dim) retorna a média móvel simples para um vetor. Lag indica o número de pontos de dados anteriores usados ​​com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (tsobj, e, timeperiod) retorna a média móvel ponderada exponencial para a série de tempo financeiro objeto, tsobj. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Percentual Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1). Saída tsmovavg (vetor, e, timeperiod, dim) retorna a média móvel ponderada exponencial para um vetor. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. (2 / (intervalo de tempo 1)). A saída tsmovavg (tsobj, t, numperiod) retorna a média móvel triangular para a série de tempo financeiro objeto, tsobj. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (vetor, t, numperiod, dim) retorna a média móvel triangular para um vetor. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. A saída tsmovavg (tsobj, w, weights) retorna a média móvel ponderada para o objeto da série temporal financeira, tsobj. Fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados ​​para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (vetor, w, pesos, dim) retorna a média móvel ponderada para o vetor fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados ​​para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (tsobj, m, numperiod) retorna a média móvel modificada para o objeto da série de tempo financeiro, tsobj. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. A saída tsmovavg (vetor, m, numperiod, dim) retorna a média móvel modificada para o vetor. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Dim 8212 dimensão para operar ao longo de inteiro positivo com valor 1 ou 2 Dimensão para operar ao longo, especificado como um inteiro positivo com um valor de 1 ou 2. dim é um argumento de entrada opcional, e se não for incluído como uma entrada, o padrão Valor 2 é assumido. O padrão de dim 2 indica uma matriz orientada a linha, em que cada linha é uma variável e cada coluna é uma observação. Se dim 1. a entrada é assumida como sendo um vetor de coluna ou uma matriz orientada a coluna, onde cada coluna é uma variável e cada linha uma observação. E 8212 Indicador para vetor de caracteres de média móvel exponencial A média móvel exponencial é uma média móvel ponderada, em que timeperiod é o período de tempo da média móvel exponencial. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Porcentagem Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1) período de tempo 8212 Comprimento do período de tempo não-negativo inteiro Selecione seu paísIm não certeza da solução correta embora uma vez que a soma da média de cada amostra iria introduzir uma quantidade razoável de erro de arredondamento. Hmm. Gostaria de saber se seperating a parte fracionária de toda a parte iria ajudar. Divida a parte inteira de cada número pela contagem. Manter três somas correntes: 1) A média das partes inteiras, 2) O restante de cada divisão, e 3) A parte fracionária de cada número. Cada vez que a parte inteira de um número é dividida, o resultado da parte inteira é adicionado à soma corrente média e o restante é adicionado à soma corrente restante. Quando a soma corrente restante obtém um valor maior ou igual à contagem, a sua divisão pela contagem com o resultado da parte inteira adicionada à soma média corrente e o restante adicionado à soma restante em curso. Também, em cada cálculo, a parte fracionária é adicionada à soma de corrida fracionária. Quando a média é terminada, a soma corrente restante é dividida pela contagem e o resultado é adicionado à soma média corrente como um número flutuante. Por exemplo: Agora o que fazer com a soma de execução fracionada. O perigo de estouro é muito menos provável aqui, embora ainda possível, então uma maneira de lidar com isso seria dividir a soma de execução fracionária pela contagem no final e adicioná-lo ao nosso resultado: Uma alternativa seria verificar a execução fracionária Soma em cada cálculo para ver se ele é maior ou igual a contar. Quando isso acontece, basta fazer a mesma coisa que fazemos com o restante executando soma. Excelente Jomit Vaghela 6-Mar-07 20:00 Eu gostei do que você disse pequenos trabalhos rapidamente se transformar em grandes empregos. Pensar em otimização durante a codificação é uma boa prática. Grande esforço e explicação, Obrigado Mike DiRenzo 5-Mar-07 15:26 Esta é a primeira vez que respondi a um de seus artigos. No entanto, sou um leitor muito ávido. Enquanto na faculdade, eu tinha que computar médias móveis ponderadas e simples também. Heck, eu mesmo tive que criar alguns dos meus próprios algoritmos de média móvel em uma implementação de ERP personalizado há algum tempo com base em algumas das mesmas fórmulas que eu aprendi em operações 101. Mas esta implementação, usando Generics, supera em muito qualquer coisa em termos de otimização, Simplicidade, e frescura direita darn. Muito obrigado por isso. Um de seus muitos fãs, Em silêncio e silêncio, a verdade fica clara. Ewma gobgob 5-Mar-07 4:30 Se você tentar calcular uma média móvel simples, você tem que manter uma coleção, o que é bastante complexo para uma tarefa tão simples. Como sobre o uso de um ewma Suas 2 linhas de código, muito mais simples. Alfa exp (-elapsedTimeSinceLastValue) ewma alfa ewma (1-alfa) newValue Re: ewma Marc Clifton 5-Mar-07 4:47 Como sobre o uso de um ewma Ideia interessante. Para os leitores que não sabem o que é um ewma, é um Exponential Weighted Moving Average. As pessoas são apenas notoriamente impossíveis. --DavidCrow Theres NENHUMA desculpa para não comentar seu código. - John Simmons / programador proscrito As pessoas que dizem que refatorarão seu código mais tarde para torná-lo bom não entendem refatoração, nem a arte eo ofício de programação. - Josh Smith Re: ewma pwasser 5-Mar-07 12:21 Uma estimativa da média móvel se o tamanho do bin para a média móvel for n pode ser obtido por: NewAverage (((n-1) OldAverage) newValue) / n Isso funciona uma vez que a caixa está cheia (número de amostra n). O compartimento parcialmente cheio é muitas vezes tratado usando um valor de semente para a média móvel inicial (OldAverage) e, em seguida, usando esse cálculo. Isso pressupõe uma distribuição normal de valores etc. Você foi ocupado Colin Angus Mackay 4-Mar-07 11:37 Postando dois artigos nesta noite. Grande trabalho eu não sei como você faz isso. Ive tem cerca de 4 ou 5 artigos metade terminou e eu só nunca parecem encontrar o tempo para completá-los. Bem. Talvez se eu ficasse fora do salão, eu conseguiria. Re: Youve sido ocupado Marc Clifton 4-Mar-07 13:25 Colin Angus Mackay escreveu: Postando dois artigos esta noite. Grande trabalho Obrigado, eu estava realmente escrevendo o artigo sobre a média correndo e percebi que a lista circular seria realmente um artigo stand-alone realmente bom. Além disso, eles são artigos leves. Posso fazer isso rapidamente. É apenas difícil de pensar em coisas úteis, mas simples. Acontece que eu precisava dessas duas classes de qualquer maneira. As pessoas são apenas notoriamente impossíveis. --DavidCrow Theres NENHUMA desculpa para não comentar seu código. - John Simmons / programador proscrito As pessoas que dizem que refatorarão seu código mais tarde para torná-lo bom não entendem refatoração, nem a arte eo ofício de programação. - Josh Smith Re: Youve sido ocupado JeffPClark 8-Mar-07 0:07 Pelo que eu li de Marc, ele provavelmente tem um programa que pode examinar um pedaço de código e explicar os detalhes intrincados, em seguida, publicá-lo diretamente para o projeto de código . Jeff Clark Arquiteto Arquiteto JP Clark, INC. Columbus, Ohio Última Atualização: 13-Out-16 23:36 Notícias Gerais Sugestão Pergunta Erro Resposta Joke Praise Rant Admin Use CtrlLeft / Right para mudar Mensagens, CtrlUp / Abaixo para alternar segmentos, CtrlShiftLeft / Direita para alternar páginas. Médias / Média móvel simples Médias / Média móvel simples Você é encorajado a resolver esta tarefa de acordo com a descrição da tarefa, usando qualquer idioma que você conheça. Calculando a média móvel simples de uma série de números. Criar uma função stateful / classe / instância que leva um período e retorna uma rotina que leva um número como argumento e retorna uma média móvel simples de seus argumentos até agora. Uma m�ia m�el simples �um m�odo para calcular uma m�ia de um fluxo de n�eros calculando apenas a m�ia dos �timos n�eros de 160 P 160 a partir do fluxo 160, em que 160 P 160 �conhecido como o per�do. Ele pode ser implementado chamando uma rotina de iniciação com 160 P 160 como argumento, 160 I (P), 160 que deve retornar uma rotina que, quando chamada com membros individuais, sucessivos de um fluxo de números, calcula a média de Para), os últimos 160 P 160 deles, vamos chamar este 160 SMA (). A palavra 160 estado 160 na descrição da tarefa refere-se à necessidade de 160 SMA () 160 lembrar determinadas informações entre as chamadas para ele: 160 O período, 160 P 160 Um recipiente ordenado de pelo menos os últimos 160 P 160 números de cada um dos Suas chamadas individuais. Stateful 160 também significa que chamadas sucessivas para 160 I (), 160 o inicializador, 160 devem retornar rotinas separadas que não 160 não compartilham o estado salvo para que possam ser usadas em dois fluxos de dados independentes. Pseudo-código para uma implementação de 160 SMA 160 é: Esta versão usa uma fila persistente para conter os valores p mais recentes. Cada função retornada de init-moving-average tem seu estado em um átomo contendo um valor de fila. Esta implementação usa uma lista circular para armazenar os números dentro da janela no início de cada ponteiro de iteração refere-se à célula de lista que mantém o valor apenas movendo para fora da janela e para ser substituído com o valor apenas adicionado. Usando um fechamento editar Atualmente este sma não pode ser nogc porque ele aloca um encerramento no heap. Alguma análise de escape pode remover a alocação de heap. Usando uma edição de estrutura Esta versão evita a alocação de heap do fechamento mantendo os dados no quadro de pilha da função principal. Mesmo resultado: Para evitar que as aproximações de ponto flutuante sigam se acumulando e crescendo, o código poderia executar uma soma periódica em toda a matriz de filas circulares. Esta implementação produz dois estados de compartilhamento de objetos (função). É idiomático em E separar a entrada da saída (ler a partir da escrita) em vez de combiná-los em um objeto. A estrutura é a mesma que a implementação do Desvio PadrãoE. O programa elixir abaixo gera uma função anônima com um período embutido p, que é usado como o período da média móvel simples. A função de execução lê entrada numérica e passa para a função anônima recém-criada e, em seguida, inspeciona o resultado para STDOUT. A saída é mostrada abaixo, com a média, seguida pela entrada agrupada, formando a base de cada média móvel. Erlang tem fechamentos, mas variáveis ​​imutáveis. Uma solução então é usar processos e uma simples mensagem passando API baseada. As linguagens de matriz têm rotinas para calcular os avarages deslizando para uma determinada seqüência de itens. É menos eficiente para loop como nos comandos a seguir. Solicita continuamente uma entrada I. Que é adicionado ao final de uma lista L1. L1 pode ser encontrado pressionando 2ND / 1, e a média pode ser encontrada em List / OPS Pressione ON para terminar o programa. Função que retorna uma lista contendo os dados médios do argumento fornecido Programa que retorna um valor simples em cada invocação: list é a média da lista: p é o período: 5 retorna a lista média: Exemplo 2: Usando o programa movinav2 (i , 5) - Inicializando o cálculo da média móvel e definindo o período de 5 movinav2 (3, x): x - novos dados na lista (valor 3), e o resultado será armazenado na variável x e exibido movinav2 (4, x) : X - novos dados (valor 4), eo novo resultado será armazenado na variável x, e exibido (43) / 2. Descrição da função movinavg: variável r - é o resultado (a lista média) que será retornada variável i - é a variável de índice, e aponta para o fim da sub-lista a lista sendo calculada a média. Variável z - uma variável auxiliar A função usa a variável i para determinar quais valores da lista serão considerados no cálculo da média seguinte. Em cada iteração, a variável i aponta para o último valor na lista que será utilizado no cálculo médio. Portanto, só precisamos descobrir qual será o primeiro valor na lista. Geralmente bem tem que considerar p elementos, então o primeiro elemento será o indexado por (i-p1). No entanto, nas primeiras iterações, esse cálculo será normalmente negativo, de modo que a seguinte equação evitará índices negativos: max (i-p1,1) ou, arranjar a equação, max (i-p, 0) 1. Mas o número de elementos nas primeiras iterações também será menor, o valor correto será (índice final - índice de início 1) ou, arranjar a equação, (i - (max (ip, 0) 1) e então , (I-max (ip, 0)). A variável z detém o valor comum (max (ip), 0) então o beginindex será (z1) e os numberofelements serão (iz) mid (list, z1, iz) retornará a lista de valor que será a soma média .) Irá somá-los soma (.) / (Iz) ri os medirá e armazenará o resultado no lugar apropriado na lista de resultados Usando um fechamento e criando uma funçãoMoving Average Este exemplo ensina como calcular a média móvel de um tempo Série no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Gosta deste site gratuito Por favor, partilhe esta página no Google

Comments

Popular posts from this blog

Aus forex reviews

List of stocks that trade weekly options

Forex rua transmissão ao vivo